If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-349x+122.5=0
a = 4.9; b = -349; c = +122.5;
Δ = b2-4ac
Δ = -3492-4·4.9·122.5
Δ = 119400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{119400}=\sqrt{100*1194}=\sqrt{100}*\sqrt{1194}=10\sqrt{1194}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-349)-10\sqrt{1194}}{2*4.9}=\frac{349-10\sqrt{1194}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-349)+10\sqrt{1194}}{2*4.9}=\frac{349+10\sqrt{1194}}{9.8} $
| 3^(x²+1)=1/9 | | -9=w+5/4 | | 2=12=5k | | -10*8k=-70 | | 2t+28=t | | z=2z-7 | | 2a×3a^2=0 | | 10=3q-13 | | 5y-2=37+10 | | 3(4w+10)/5=5 | | 8(2t+4)=-128 | | 4x63-8x^2-11x-3=0 | | x-10=4x | | -10(s+3)=-17 | | 3(b+2)=1 | | x+1=4/x+1 | | -2x+-18=-24+16x | | x(-2x-5/3)=2-x/2 | | x=150+1500(200-200)=0 | | -0,33x2=x-6 | | 150x-1500=0 | | 5(f-10)=-5 | | 9x-101=6x-14 | | n^2+8n-16=0 | | 4(4w+2)/3=1 | | 4(x-2)=1/3 | | -3(2t+1)=3 | | 4.9x^2-10x-200=0 | | 2x^2+60x-1=0 | | v/4+7=-12 | | 8s-24=-78 | | 4^x+2+2^2x+3=96 |